• 奧林巴斯顯微鏡,普通光學透鏡系統的缺陷(畸變)

    顯微鏡等光學儀器的透鏡扭曲的形象的錯誤產生的球面透鏡表面的幾何形狀的缺陷(通常稱為“像差”)與由各種機制所困擾。有三個主要的來源的非理想透鏡作用(錯誤),在顯微鏡觀察。透鏡錯誤的三個主要類別,與波陣面,并相對于焦平面的顯微鏡的光學軸的方向。這些包括如色差和球面像差的光軸上透鏡的錯誤,主要離軸彗差,像散表現為錯誤,和像場彎曲。第三類的像差,在立體顯微鏡的變焦透鏡系統,常見的是,其中包括兩個桶形畸變和

    2020-09-04

  • 尼康顯微鏡,立體顯微鏡簡介

    凱魯賓奧爾良1671被設計和建造的第一個立體式顯微鏡具有雙目鏡和匹配物鏡,但實際上是一個系統,只能由應用輔助鏡片實現圖像勃起偽立體儀器。奧爾良設計的一個主要缺點是,左側的圖像被投射到右目鏡和形象工程的左目鏡右側。它不是直到150年后,當查爾斯惠斯通爵士寫了一篇論文,雙目視覺立體顯微鏡有足夠的利益刺激進一步開展工作提供動力。在十九世紀中葉,弗朗西斯·赫伯特·溫漢姆倫敦設計的第一個真正意義上成功的體視

    2020-09-04

  • 尼康顯微鏡,熒光共聚焦顯微鏡的關鍵方面

    我們都知道,熒光顯微照片揭示了在組織中的分子標記的位置,對不對?好吧,也許不是。 事實上,你可以很確定,在熒光模式大多數激光掃描共聚焦顯微鏡測量的是在某一特定時間所收集的光子數的某些功能。 我們希望這是一個或兩個有趣的參數的精確測量 - 局部分析物的濃度或局部離子濃度。 事實上,許多因素會影響實際存儲在計算機存儲器中在任何給定時刻的數值。一個通用的激光掃描共聚焦顯微鏡示出了一些在本文中提及的“3

    2020-09-04

  • 奧林巴斯顯微鏡成像,接近為中心的影像增強器

    圖像增強器被開發用于軍事用途,以提升我們的夜視和經常被稱為晶圓管或接近為重點增強器 。 它們具有平坦的陰極通過一個微通道板(MCP)電子倍增器和MCP上的相反側的磷光輸出畫面的輸入側的小間隙隔開。大量的電壓是跨越這需要精心施工的設備,以確保他們不被污染并能保持較高的內部真空的光陰,磷光輸出畫面,和MCP之間的小間隙存在。 近程聚焦增強器不受幾何失真或陰影,因為光電子按照陰極,輸出畫面,并在MCP

    2020-09-04

  • 奧林巴斯顯微鏡:熒光顯微鏡攝影的錯誤

    顯微攝影在熒光照明條件下,提出了一套獨特冒充顯微鏡的特殊問題的情況。曝光時間往往是非常長的(在某些情況下運行多少秒到幾分鐘),試樣的熒光可能會在曝光過程中褪色,全黑的背景往往在不經意間光信號米建議過度曝光。此外,熒光的標本發出他們自己的光,和顆粒位于所需的焦點平面的上方和下方往往輻射光造成圖像細節模糊。盡管熒光圖像可能會顯得明亮時,通過顯微鏡目鏡(由于人眼對光線的敏感度的精致),它們通常需要較長的

    2020-09-03

  • 奧林巴斯顯微鏡成像,什么是EBCCDs?

    電子轟擊電荷耦合器件(EBCCD)是圖像增強器和CCD攝像機是為在非常低的光水平成像的標本在熒光顯微鏡下可使用的混合體。 在該裝置中,光子被類似于在圖像增強器的光電檢測。 所釋放的電子被跨越的薄型背照式CCD的背面側的間隙和沖擊加速。這些高能電子產生多電荷在CCD上產生幾百溫和上升。 圖1示出的電子轟擊在CCD的光電子加速由高電壓梯度(1.5?2.0千伏特),直接影響到背照式CCD于視頻速率操作

    2020-09-03

  • 尼康顯微鏡接近聚焦影像增強

    圖像增強器開發增強夜視軍事用途,通常稱為晶片管或近聚焦像增強器。他們有一個扁平的光電陰極的微通道板的輸入端的一個小間隙分開(MCP)電子倍增器和MCP的反面磷光輸出屏幕。操作指南,使用增益滑塊調整對電荷耦合器件表面電子數。光子(黃球)進入窗口導致電子的生產(紅色球)的光電陰極,然后直接進入MCP,在那里它們通過光纖導光的CCD芯片上設有面對光波導光電二極管的表面的大門。大量的電壓是目前在小的差距

    2020-09-03

  • 奧林巴斯顯微鏡共聚焦顯微鏡的物鏡結構

    任何常規光學顯微鏡的配置,物鏡是在確定圖像的信息內容的系統中最關鍵的部分。 精細標本細節的對比度和分辨率,其中的信息可以被獲得的樣品內的深度,和圖像領域的橫向范圍都是由物鏡的、用于觀測的具體條件下的性能確定的設計。 額外的要求是在共聚焦掃描技術對物鏡,在這個關鍵的成像組件也可作為照明聚光鏡和經常需要進行高精度在很寬的波長范圍內和在非常低光水平,不引入不可接受的圖像退化的噪聲。 無論任何

    2020-09-03

上一頁12下一頁 轉至第

客服熱線

工作時間9:00-17:00
021-51602084
電話咨詢
郵件咨詢
在線咨詢
QQ客服